Average-preserving symmetries and energy equipartition in linear Hamiltonian systems

نویسندگان

  • Sanjay P. Bhat
  • Dennis S. Bernstein
چکیده

This paper analyzes energy equipartition in linear Hamiltonian systems in a deterministic setting.We consider the group of phase space symmetries of a stable linear Hamiltonian system, and characterize the subgroup of symmetries whose elements preserve the time averages of quadratic functions along the trajectories of the system. As a corollary, we show that if the system has simple eigenvalues, then every symmetry preserves averages of quadratic functions. As an application of our results to linear undamped lumped-parameter systems, we provide a novel proof of the virial theorem, which states that the total energy is equipartitioned on the average between the kinetic energy and the potential energy. We also show that under the assumption of distinct natural frequencies, the time-averaged energies of two identical substructures of a linear undamped structure are equal. Examples are provided to illustrate the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion

In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Canonical Structure and Symmetries of the Schlesinger Equations

The Schlesinger equations S(n,m) describe monodromy preserving deformations of order m Fuchsian systems with n + 1 poles. They can be considered as a family of commuting time-dependent Hamiltonian systems on the direct product of n copies of m × m matrix algebras equipped with the standard linear Poisson bracket. In this paper we present a new canonical Hamiltonian formulation of the general Sc...

متن کامل

A Characterization of Energy-Preserving Methods and the Construction of Parallel Integrators for Hamiltonian Systems

High order energy-preserving methods for Hamiltonian systems are presented. For this aim, an energy-preserving condition of continuous stage Runge–Kutta methods is proved. Order conditions are simplified and parallelizable conditions are also given. The computational cost of our high order methods is comparable to that of the average vector field method of order two.

متن کامل

Normal Forms and Unfoldings of Linear Systems in Eigenspaces of (Anti)-Automorphisms of Order Two

In this article we classify normal forms and unfoldings of linear maps in eigenspaces of (anti)automorphisms of order two. Our main motivation is provided by applications to linear systems of ordinary differential equations, general and Hamiltonian, which have both time-preserving and time-reversing symmetries. However the theory gives a uniform method to obtain normal forms and unfoldings for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • MCSS

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2009